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A  B  S  T  R  A  C  T   

 
Flash flood is a typical natural hazard that  occurs  within a short  time  with  high  flow velocities and  is difficult to 

predict. In  this  study, we  propose and  validate a  new  soft  computing approach that  is an  integration of an 

Extreme Learning Machine (ELM) and  a Particle Swarm  Optimization (PSO), named as PSO-ELM, for the  spatial 

prediction of flash floods.  The ELM is used  to generate the initial flood model, whereas the PSO was employed to 

optimize the  model. A high  frequency tropical typhoon area  at  Northwest of Vietnam was  selected as a case 

study. In this regard, a geospatial database for the study  area  was constructed with  654 flash flood locations and 

12 influencing factors (elevation, slope,  aspect, curvature, toposhade, topographic wetness index,  stream power 

index,  stream density, NDVI, soil  type,  lithology, and  rainfall). The  model  performance was  validated using 

several evaluators such  as kappa statistics, root-mean-square error (RMSE), mean absolute error (MAE), coef- 

ficient of determination (R2), and  area  under the  ROC curve  (AUC-ROC) and  compared to three state-of-the-art 

machine learning techniques, including multilayer perceptron neural networks, support vector machine, and 

C4.5  decision tree.  The results revealed that  the  PSO-ELM model  has  high  prediction performance (kappa sta- 

tistics = 0.801, RMSE = 0.281; MAE = 0.079, R2 = 0.829, AUC-ROC = 0.954) and  successfully outperformed 

the three machine learning models. We conclude that  the proposed model  is a new tool for the prediction of flash 

flood  susceptibility at high  frequency tropical typhoon areas.

 
 

1.  Introduction 

 
Flooding  is one  of the  most  hazardous natural disasters due  to its 

widespread social  and  economic impacts, especially in  the  high  fre- 

quency  tropical cyclone  regions  of south  and  east  Asia (Bubeck  and 

Thieken,  ; Hu et al.,; Peduzzi,  ; Ward et al.,). Some estimations suggest 

that  the flooding  damage during  the year 2013  was over  50  billion  

USD worldwide (Wasko  and  Sharma,  ). The  da- mage may even be 

exuberated due to climate  change  induced by heavy rainfall  and  

unplanned land-use activities (Bubeck  and  Thieken,  ; Hartnett  and   

Nash,   ).  Among  different  types   of  floods,   flash flooding  is 

extremely dangerous due  to  its rapid  onset  characteristics and  high  

flow  velocities, which  cause  fatalities, economic losses,  and 

severe  damage to the  environment (Destro  et al., ;  Jalayer et al., 

;  Santo  et  al.,). However, it remains a difficult  task  to  ac- curately 

predict flash  flood  due  to  the  complex  nature of  this  phe- nomenon 

(Edouard et al.,). Thus, it is necessary to develop  a high accuracy model  

for predicting the probability of flash flood occurrence and mapping its 

susceptibility. The result can assist the local authorities and  the  

decision-makers in  disaster risks  management and  for  miti- gating  the  

effects of climate  change. 

Various  studies  have  been  conducted to predict the  probability  of 

flood  occurrences that  can  be grouped into  three  main  groups,  tradi- 

tional  analysis,  rainfall–runoff, and pattern classification (Tien Bui and 

Hoang,  ). In the  first  group,  long-period time  series  data  at  hy- 

drological stations are  used  to generate regression models.  Therefore,



International Journal of Engineering Sciences Paradigms and Researches: (Vol. 23, Issue 01) and (Publishing Month: August 2015) 

   72                    www.ijesonline.com (ISSN: 2319-6564) 
 

t 

 
 

these  models  are  capable to forecast  discharge in both  space  and  time 

scales.  Although these  models  are  typically used  to predict flood  pro- 

blems  for large-scale basins,  the  lack  of long-period data  often  limits 

their   applications. The  second  group   of  the  models   (e.g.,  HEC-RAS 

(Brunner, 1995)  and  MIKE (Zhou et al., 2012)) focuses on establishing 

relations between rainfall  and  runoff  to predict both  spatial  and  tem- 

poral floods. They are the most widely used models for flood forecasting 

and  management. However, they  still  require long-period time  series 

monitoring data  at hydrological stations to achieve  the highest  level of 

predictive accuracy. In contrast to these models,  the last group employs 

a new  approach called  “on-off” classification, which  is independent of 

monitoring data  at gauge stations. Using these models and based on the 

historical floods  and  geo-environmental data,   a  flood-prone area  is 

delineated into the flood non-flood  classes (Bui et al., ). Given the 

availability  of  multi-source  remotely  sensed   data   such   optical   and 

Synthetic Aperture Radar  (SAR) images,  various  data-driven  models 

have been proposed and suggested for flood prediction (de Musso et al., 

;  Khosravi  et  al.,  ;  Lim and  Lee, ;  Tong  et  al.,  ). However, it is still 

difficult  to accurately predict flash  flooding  in the mountainous areas. 

In recent  years,  machine learning models  have  received attention 

for  flood  prediction  due  to  their   high  prediction performance and 

capability to handle complicated relationships between input  variables. 

These  models  include  artificial neural  networks (ANN) (Sahoo  et  al., 

2006;  Youssef et al.,  2011), support vector  machines (SVM) (Tehrany 

et al.,  2015), logistic  regression (Nandi  et al), evidential belief 

function and decision  trees  (Rahmati and Pourghasemi), random forest  

and  boosted-tree (Lee et  al.,  ), GARP and  QUEST (Darabi et al., ), 

WELLSVM (Zhao  et al., ), and  classification and  re- gression  trees 

(CART). However, some other  studies indicate that  a high level of 

predictive accuracy can  be achieved via hybrid  and  ensemble 

machine learning models,  e.g.,  ensemble of  weights-of-evidence and 

support vector  machines (Tehrany et  al.,  2014), hybrid  Bayesian  fra- 

mework  (Tien  Bui and  Hoang,  ), neuro-fuzzy system  integrated with  

metaheuristic algorithms (Termeh   et  al.,  2018;  Tien  Bui et  al., 

b;   Tien  Bui et  al.,  ), logistic  model  tree  with  bagging  en- 

forecasting and  reported that   the  integrated model  outperforms the 

single ELM model.  Niu et al.  showed  that  PSO can significantly 

improve  the  prediction accuracy of the  base  ELM model  in hydrologic 

analysis.   Ghimire   et  al.  combined  self-adaptive differential 

evolutionary (SDE) with ELM for predicting solar radiation and showed 

an  improved model  performance than  that  of the  SVM and  Gaussian 

process  models. 

Nonetheless, to the best of our knowledge, the potential of the ELM 

model  and  its  integration with  optimization algorithms have  not  yet 

been  explored for the prediction of flash flood susceptibility. Thus, this 

study  was conducted to fill this gap by proposing and  verifying  a PSO 

optimized ELM model  for the prediction of flash floods. PSO is selected 

because  this  is one  of the  most  successful  metaheuristic optimization 

algorithm used in literature (Cheng and Jin, 2015). In this regard, ELM 

is used  to generate the  model  structure, while  the  PSO is employed to 

search  and optimize the weights  of the model.  The application model is 

described via a case study  from a high frequency tropical typhoon area 

in  the  northwest of Vietnam.   Finally,  the  efficiency  of the  proposed 

PSO-EML model  is evaluated using  several  performance metrics  and 

compared to benchmarks, MLP-ANN, SVM, and  C4.5 decision. 

 
2.  Mathematical background of the  algorithms used 

 
2.1.  Extreme learning machines 

 
Extreme  learning machine (ELM) is a  state-of-the-art learning  al- 

gorithm for single-hidden layer  feedforward neural  networks (SLFNs), 

which  has proven  its remarkable performance in both classification and 

regression applications (Huang  et al.,  2006;  Huang  et al.,  2012). This 

algorithm can produce good generalization performance at much faster 

learning speed than traditional least square  support vector machine (LS- 

SVM) and  proximal support  vector   machine (PSVM) (Huang   et  al., 

2006). 

Given pattern x of N input  variables x ∈RN, the  output of an ELM 

with  L hidden nodes  and  q out nodes  is expressed as follows: 
 

L

sembles  (Chapi  et  al.,  ), swarm  optimized neural  networks (Ngo 

et  al.,  a), ensemble of multivariate discriminant analysis,  CART, 
f
L 

(x) = i 
G (IWi , BAi , x) 

i=1                                                                                                                                                   (1)

and  SVM (Choubin et  al.,  ), ensemble of multi-criteria  decision 

making  (Wang et al.,), and fuzzy rule based  ensembles (Bui et al., 

). A detailed review  of the application of machine learning models for 

flood prediction can be found  in Mosavi et al.  

The recent  advancements on machine learning have  introduced the 

extreme  learning  machine  (ELM)  (Huang   et  al.,  2004),  which   has 

 

where  IW, BA, OW, and  G are  the  input  weights, the  bias,  the  output 

weights, and  the  activation function, respectively. 

In  ELM, the  input  weights   are  randomly generated, whereas the 

output weight,   OW,  is  computed using  the  linear   system  (Eq.  (2)) 

(Huang  et al., 2011)  below.

proven  its  effectiveness in various  real-word problems, though it has 

not yet been  explored for flash flood modeling. The main  advantage of 

the  ELM is that  it uses linear  algebra to derive  its output weights, in- 

OW = H†T 
 

where  H† is the  Moore–Penrose generalized inverse  of H. 

(2)

stead of using the backpropagation algorithm or the Bayesian algorithm 

in traditional ANNs. In other  words,  the  output weights  are  computed 

analytically, which  results  in a fast training process and high prediction 

performance in  various   environmental  modeling problems. Deo  and 

Şahin  (2015) compared the ELM and  ANNs for drought prediction and 

h (x1) 

H = 

h (xN ) 

 
T 

G (a1, b1 , x1) 

= 

G (a1, b1, xN ) 

 
tT 

…  G (aL , bL , x1) 

… 

…  G (aL , bL , xL ) 

 
N × L 

 

 
(3)

reported that  the  ELM produced better results.  Abdullah  et al. (2015) 
1                                                 1 

=           N x q and T = 
 
N × q

showed    that   the   ELM  is   more   efficient    than   feedforward  back-                      T                                                 T 

L  L 
propagation  model   in  predicting  evapotranspiration.  Yaseen  et  al. 

(4)

 reported that  the ELM model  has better accuracy for predicting 

compressive strength of concrete compared that  that  of multivariate 

adaptive regression spline  (MARS), decision  tree,  and  SVM models. 

However, a disadvantage of the ELM model is that the weights  of the 

input  layer  are  randomly generated and  the  model  do  not  update or 

optimize these  weights  in the  training phase,  causing  an unstable per- 

formance during   different training phases  (Eshtay  et  al.,  ;  Zhu et 

al.,  2005). To overcome this  limitation, metaheuristic optimization 

algorithms were  suggested to search  for the  best  parameters and  opti- 

mize  the  weights  of the  input  layer.  Taormina and  Chau  (2015) in- 

tegrated particle swarm  optimization (PSO) and  ELM for  streamflow 

where  H is the  output matrix  of the  EL; x1, x2, …, xN are  flood  con- 

ditioning factors;  and T is the target  values of the training dataset (i.e., 

flash flood and  non-flash flood values). 

 
2.2.  Particle swarm optimization 

 
This section  presents the  PSO algorithm that  was used  to optimize 

the  ELM model  for flash flood susceptibility mapping in this  research. 

More specifically, PSO was used to optimize the input  weights  (ai) and 

bias  of the  input  layer  of the  ELM model,  whereas the  weights  of the 

output layer were computed by the ELM algorithm (the Moore–Penrose
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generalized inverse  mentioned in Section  2.1). 

The PSO algorithm, proposed by Kennedy  and Eberhart (1995), is a 

well-known stochastic optimization technique that  works by initializing 

randomly  a  group   of  birds   within  a  population  (swarm)  over  the 

searching space  called  as a “particle”. A hypothesis on the  solution of 

the optimization problem can be given by the position of each  particle 

in the  swarm  and  is depicted by a different objective function value, 

i.e., fitness value. The value is defined  when  swarm  flies across the error 

surface  and  particles are  identified by  their  positions and  velocities. 

These  are  vectors  of the  same  number of elements as  the  dimension 

problems while the particles fly with a certain velocity  and find the best 

position after  some  iterations. In each  iteration, a particle adjusts  its 

velocity  vector  following  its momentum and the best position influence 

(Pb) on its neighbors (Pg), and then  a new position that  the particle is to 

fly is achieved. 

Assuming  the  position of the  ith  particle can be expressed as vector 

Xi, Vi is its velocity,  and P identifies the best positions of its neighbors, 

the  employed velocity  updates equation can be given  by: 

 
Ki 

3.2.  Data used 

 
3.2.1.  Flash-flood inventory map 

Forecasting flash  flooding  using  a machine learning approach re- 

quires  a knowledge of the events  that  have  occurred in the recent  past 

(Borga et al., 2011;  Khosravi  et al., ;  P. et al., 2011;  Tien Bui and 

Hoang,  2017). Thus, preparation of a flash flooding  inventory map is a 

compulsory task. However, flash flooding  is generally characterized by 

both  small temporal and  spatial  scales that  are difficult  to observe  and 

map  (Borga  et al.,  2011). Therefore, a collection of flash  flooding  in- 

ventories remains challenging in  the  current literature. Prior  studies 

normally collected historical flash flood events  during  time-consuming 

and  costly  field  surveys  (e.g.,  Tehrany   et  al.  (2015); Khosravi  et  al. 

. In this study,  an inventory map  with  654 flash flood locations, which  

was the  outcomes from the  stated-fund project  of flash flooding 

(B2018-MDA-18DT)  (Ngo et al.,  ), was  used.  Accordingly, flash 

flooding  polygons  occurred in the  rainfall  season  of were  identi- fied  

using  the  change   detection  techniques  based   on  the  remotely 

sensed  data  analysis  of the  Sentinel-1A  synthetic aperture radar  (SAR) 

imagery  and  the  field surveys.
Vi                Vi  +  

j=1 

aj Pnbrj           Xi  
(5) 

 

 
3.2.2.  Influencing factors

where   the  scalars  χ and  φ  are  constriction  coefficients often  set  to 

0.7298 and 4.1, respectively. Ki is the number of neighbors for particle i 

and  nbrj  identifies i's j-th neighbor. 

The contribution of each  neighbor is weighted using  a normalized 

random coefficient  aj  which  is the  same  for  each  particle dimension, 

and  is defined  as: 
 

bj
 

Modeling  of  flash  flooding  requires characterizing  geospatial  in- 

formation on key hydrological properties of the  study  area.  Therefore, 

determination of  influencing variables  is  an  important task.  In  this 

study,  a total  number of twelve  influencing factors  were  selected:  ele- 

vation, slope,  curvature, toposhade, aspect,  topographic wetness  index 

(TWI),   stream    power    index    (SPI),   stream    density,   Normalized 

Difference  Vegetation Index (NDVI), soil type,  lithology, and  rainfall.

aj  = , bj = U (0, 1), j = 1, …, Ki 
bj                                                                                                                                                       (6) 

Topography  is  a  major   factor   of  the   hydrological  process   and 

strongly   related to  flash  flooding  events  because   its  steep  relief  en- 

hances   the  rapid   concentration  of  waterflow  (Destro   et  al.,  ).
where  U ranges  from 0 to 1 identifying a uniform  random number. 

 
3.  Study  area  and data  used 

 
3.1.  General description of the study area 

 
The study  area  is located  in the  northwest mountainous region  of 

two districts namely, Bac Ha and Bao Yen (BHBY), in Lao Cai province, 

which  is about  263 km from Hanoi,  Vietnam.  It lies between the  long- 

itudes  104°10′E  and  105°37′E,  and  between the  latitudes 22°5′N  and 

22°40′N,  covering  an area  of about  1510.4 km2 (Fig. 1). 

The topography of the  area  is classified  as hilly mountains, gorges, 

and highly  dense  rivers.  The altitude ranges  from 38.9 m to 1878.69 m 

above  sea level with  the mean  is 538.1 m. Approximately 85.4%  of the 

total study area has slopes ranging from 10 o to 40o, while about  11.5% 

of the  area  has  slopes  less than  10o and  the  areas  with  slopes  greater 

than   40o   accounts for  only  3.1%  of  the  total   study   area   (General 

Statistics  Office, ;  Tehrany  et al., ;  Tien Bui et al., ). 

Administratively, the BHBY districts are divided  into 37 communes 

and  2  towns  and  the  total   population    is  136.06 thousand people.   

The  average population  densities were  83 people km−2   and 

96 people km−2 for Bac Ha and Bao Yen, respectively (General  Statistics 

Office, ). 

The  study  area  is  characterized by  subtropical monsoon climate 

with  two unique  seasons,  a rainy  season  lasts from November  to April 

while  a  dry  season  starts  from  May  to  October. The  average annual 

precipitation varies  from  1440 mm  to  2200 mm  and  the  majority  of 

precipitation generally occurs  in the  rainy  reason.  The study  area  lo- 

cated  in a stormy  center  of the  world  and  annually experiences heavy 

and  extreme rainfalls. Although flash  floods  occur  almost  every  year, 

Therefore, topographic related factors  i.e.  elevation, slope,  curvature, 

toposhade, aspect,  TWI, and  SPI should  be  used  in  such  a  modeling 

effort.  In  this  study,  a  Digital  Elevation Model  (DEM) with  a  spatial 

resolution of 20 m for the  study  area  was generated from  the  national 

topographic  map   with   1:50,000  scale  provided  by  the  Ministry   of 

Natural  Resources  and  Environment of Vietnam  (MONRE). Seven geo- 

morphometric factors  shown  in Fig. 2 were  derived  from the  DEM. 

Elevation and slope were selected  in current work because  the flow 

of water  is driven  by the  gravity  force,  moving  from  higher  to lower 

elevations (Ellabban et  al.,  2014), while  slope  controls  the  speeds  of 

surface  runoff.  Additionally, flood-prone areas  are  usually  located  on 

the flat areas  and low elevations (Tehrany et al., 2013). Curvature was 

employed since  flash  flooding  areas  are  related to  high  topographic 

convergence  (Manfreda et  al.,  2014). In  this  research, the  maps  of 

elevation and  slope  were  prepared in ten  classes  (Fig. 2a,  b), whereas 

the  curvature map  was  classified  into  seven  classes  (Fig.  2c).  These 

classes  of the  three  maps  were  determined based  on the  natural break 

interval method available in ArcGIS. The aspect  map (Fig. 2d) consisted 

of nine  classes were  used. 

Toposhade and  aspect   were  selected, as  they  are  related to  the 

convergence and  directions of water  flowing  (Aryal  and  Mein,  2003). 

For this  study,  the  toposhade and  aspect  maps  (Fig. 2c, g) were  cate- 

gorized  into  nine  classes.  The TWI (Fig. 2e)  and  the  SPI (Fig. 2f) are 

typical  hydrological parameters that  influence both  the  flow intensity 

and water  accumulation (Martınez-Casasnovas et al., 2004). Therefore, 

they  were  selected  for flash  flood  modeling in this  research. The TWI 

(Beven  et al.,  1984)  and  the  SPI (Moore  et al.,  1991)  were  calculated 

using  the  following  equations: 

TWI = ln(a/tan   )                                                                                         (7)

there  was a report of extreme flash floods during  the last three  days on 

October  10–12,    with  severe  damage. The highest  total  precipita- 
SPI = As tan (8)

tion   at   a  measuring  station  was   approximately  201 mm   (General 

Statistics  Office, 2017;  Tehrany  et al., ). 

where  a is local  upslope  area,  β is local  slope,  and  Asis  the  specific 

catchment area.
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Fig.  1.  Location of the  study  area  and  flood  locations. 

Stream  density, which  is computed by  dividing  the  length  of the 

river (km) over the basin area (km2), is an important factor  influencing 

flash  flood  occurrences. The  regions  with  higher  stream   density   are 

more  likely  to have  a rapid  response to rainstorm (Brody et al., 2007) 

and are more prone  to flash floods. The stream  density  map with  seven 

classes  was considered for the  current work.  Furthermore, NDVI is an 

important  indicator that   reflects   the  vegetation  coverage   and  flash 

floods are very likely to occur in the areas with low vegetation (Tehrany 

et al., 2013). In this analysis,  the NDVI map (Fig. 2j) with  eight  classes 

was  derived  from  the  Landsat-8  Operational Land  Imagery  (30 m re- 

solution and  available from  http://earthexplorer.usgs.gov)  using  the 

following  equation (Reed et al., 1994): 
 

NDVI = (NIR     RED)/(NIR + RED)                                                        (9) 
 

where  NIR and  RED are  the  surface  reflectance of the  near-infrared 

band  and  the  red band,  respectively. 

Soil  characteristics  have   long  been   recognized  as  an  important 

factor  that  influences rainfall-runoff mechanisms (Geris  et  al.,  2015), 

whereas  lithology  structure  greatly   affects   the   architecture  of  the 

drainage pattern (Pizzuto,   1995)   that  relates   to  the  development  of 

floodplain. In  this  research, the  soil  types  map  with   13  categories 

(Fig. 2k)  was  extracted from  the  national pedology  map  at  a scale  of 

100,000, which  was provided by the  MONRE. The lithology map  with 

14  classes  was  generated from  the  national geological   and  mineral 

resources map  of Vietnam  at a scale of 200:000. 

Because  a  flash  flood  is often  associated with  high-intensity and 

short  rainstorms (Borga et al., 2011);  thus,  rainfall  is a key influencing 

factor for flash flood modeling (Hapuarachchi et al., 2011). In our study 

area,  high-intensity rainstorms occurred on 10,  11,  and  12th  October 

 generated widespread severe  flash flooding.  In addition, rainfall lasted  

during  the  previous 9 days and  the  rainfall  was ended  after  Oc- tober  

12,  2017.  Therefore, a  total  measured rainfall  from  1  to  12th 

October  2017  at 16 rainfall  stations in and around the study areas were 

used to generate the  rainfall  map  (Fig. 2l). 

 
 
4.  Proposed hybrid  artificial intelligence approach based  on the 

PSO-ELM for predicting flash  flood  susceptibility 

 
The overall  workflow  of the  hybrid  PSO-ELM model  for predicting 

flash  flood  susceptibility is shown  in  Fig. 3 and  consists  of six main 

steps:  i)  construction of the  geospatial database, ii)  multicollinearity 

analysis  and  factor  selection, iii) construction of the  training and  vali- 

dation  datasets; iv) implementation of the ELM model;  v) optimization 

of the  ELM model  using  PSO, and  vi) validation of the  model.  The in- 

terested reader is referred to Huang  (2013) for further information on 

ELM and its MATLAB scripts.  In this study,  the proposed PSO-ELM was 

programmed by the  authors in MATLAB R2018.

http://earthexplorer.usgs.gov/
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Fig.  2.  Flash  Flood  influencing factors: (a)  Elevation; (b)  Slope;  (c)  Aspect;  (d)  Curvature; (e)  Topographic wetness index  (TWI);  (f)  Stream power index;  (g) 

Toposhade; (h)  NDVI; (i)  Stream density; (j) Soil type;  (k)  Lithology; and  (l)  Rainfall. 

4.1.  Construction of the geospatial database 

 
The geospatial database was  constructed using  the  ESRI® file geo- 

database format  (Zeiller and Murphy,  2010)  available at the ArcCatalog 

10.4.  The database consists  of the flash flood inventory map (654  flash 

flood  locations) and  12  influencing factors  affected  flash  flood  of the 

study area. All factors were converted to a raster  format  with a grid size 

of 20 × 20 m and in the national geodetic system of VN2000 (UTM map 

projection, Zone  48 N, central meridian of 105o, and  scale  factor  of 

0.9996). Consequently, the  size  of the  study  area  was  formulated in 

2367  rows and  3292  columns. 

4.2.  Multicollinearity analysis and factor selection 

 
In this  study,  the  possible  multicollinearity among  the  flash-flood 

influencing factors was tested  using the Variance  Inflation Factors (VIF) 

and tolerances (Dormann et al., 2013). Previous  studies reported by Bui 

et al. (2011) and Khosravi et al. (2018) suggesting that the VIF > 10 or 

tolerance < 0.1 shows  a multicollinearity problem among  the  influen- 

cing factors. 

The results  from Table 1 indicate no collinearity exist among  flash 

flood-influencing factors  in the study  area.  Thus, all influencing factors 

were  selected  for flash-flood  prediction modeling.
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Fig. 2.   (continued)
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Fig. 3.  Workflow of the  proposed PSO-ELM model. 

Table  1 

Multicollinearity analysis for flash-flood influencing factors. 

each  sample  position were  extracted. Values  of “1”  and  “0”  was  as- 

signed to the flood and non-flash samples,  respectively. This resulted in
 

No 
 

Flash  flood  influencing factors 
 

Collinearity 

statistics 

training validation datasets with  916  and  392  samples,  respectively. 

  
 

Tolerance 
 

VIF 4.4.  Configuration of the ELM model 
 

1 

2 

 

Elevation 

Slope 

 

0.429 

0.146 

 

2.334 

6.842 

 
Given the training dataset with  12 flash-flood  influencing factors  as 

3 Curvature 0.684 1.462 input  neurons, the  ELM model  was configured by initiating values  for 

4 Toposhade 0.579 1.727 the  input  weight  matrix  (IW) and  bias (BA). The output weight  matrix 
5 Aspect 0.840 1.190 (OW) is computed analytically from the IW and BA by the original ELM 
6 

7 
Topographic wetness index (TWI) 

Stream power index (SPI) 
0.169 

0.377 
5.902 

2.652 algorithm. Since the performance of the ELM model is influenced by the 

8 Stream density 0.545 1.836 amount of the hidden neuron used (L), a test was carried out between L 

9 NDVI 0.636 1.572 versus  RMSE (Eq. (12))  to determine the best L, and  herein, 10 hidden 
10 Soil type 0.795 1.258 neurons revealed the best result for the data at hand.  The final structure 
11                Lithology                                                     0.804                    1.243 

12                Rainfall                                                       0.591                    1.691 

 
 

4.3.  Construction of the training and validation datasets 

 
The training and  the  validation datasets were  computed using  the 

influencing factors combined along with the flash flood inventory map. 

Seventy  percent of the  flood  events  were  randomly selected  and  used 

for the training dataset, whereas the remaining (30%)  was used for the 

testing  set as suggested in (Razavi  Termeh  et al., 2018). 

of the  ELM model  was  determined as  12  input  neurons (flash  flood 

influencing factors),  10  hidden neurons, and  2 output neurons (flash 

flood and  non-flash flood). 

 
4.5.  Optimization of the ELM model using PSO 

 
The aim of the optimization process using the PSO algorithm was to 

find the  best  values  for IW12×10  and  BA10×1  that  minimize the 

differ- ence  between the  flood  output value  and  the  flood  target  

value. This difference was measured by a proposed cost function (CF) 

as below:

Because  the  flash-flood  modeling here  is considered as a machine 

learning based  binary  pattern recognition, the  same  number of non- 

n 

CF = 
 (yi          ti 

)2 

nflash flood was sampled  to hinder the prediction model  from potential 

bias (Ayalew  and  Yamagishi,  2005;  Martinović et al., 2016). Then,  at- 

tribute values  of 12  flash  flood  influencing factors  corresponding to 

i=1                                                                                                                                                      (10) 
 

where  yi  and  ti  are  the  predicted value  and  the  target  value  of the  ith 

sample;  n is the  total  number of samples.
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Fig.  4.  Best objective value  versus  running iteration in the  training phase  of the  PSO-ELM model. 
 

 

 
 

Fig. 5.  Performance of the  PSO-ELM model  in the  training dataset: (a)  Target and  computed values; (b)  Magnitude of the  error; (c)  Distribution of the  error. 

 

 
 

Fig.  6.  Performance of the  PSO-ELM model  in the  validation dataset: (a)  Target and  computed values; (b)  Magnitude of the  error; (c)  Distribution of the  error.
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n 

Table  2 

Performance of the  proposed PSO-EML model. 
 

Statistical measure                       Training dataset                       Validation 

dataset 

 
True  positive                                         407                                                   165 

True  negative                                       448                                                   188 

False  positive                                         51                                                     31 

False  negative                                        10                                                      8 

Sensitivity (%)                                            97.60                                       95.38 

Specificity (%)                                            89.78                                       85.84 

Accuracy (%)                                              93.34                                       90.05 

RMSE                                                           0.237                                       0.281 

MAE                                                            0.056                                       0.079 

Kappa statistic                                    0.867                                       0.801 

R
2                                                                                        

0.881                                       0.829 

 
 

The best values  are searched using PSO, resulting in optimizing the 

base  ELM model.  Thus, values  of the  IW12×10  and  BA10×1  were 

trans- ferred  to the coordinates of particles in the swarm  (130 

dimensions), in which,  each  particle with  its  coordinates was  a  

solution for  the  two weight  matrices, IW and  BA, of the  flash flood 

model.  The basic  para-  meters  of the PSO were adapted following  the 

recommendation given in the literature (Tien Bui et al., 2018a), as 

follows: population size = 35, searching space = −1.0 to 1.0, 

maximum number of iteration =2000, inertia weight = 0.98,  damping 

ratio = 0.75,  c1 = 1, and  c2 = 2. 

 
4.6.  Performance assessment and final trained PSO-ELM model 

 
Performance of the  obtained models  was  assessed  using  the  root- 

mean-square error  (RMSE),  the  mean  absolute error  (MAE),  and  the 

coefficient  of determination (R2) (Mohammadzadeh et al., 2014). 

Table  3 

Performance of the  benchmark models in the  validation dataset. 
 

Performance            PSO-ELM           MLP-ANN            SVM            C4.5  Decision tree 

 
Accuracy (%)                 90.05               88.01            87.24                  89.28 

Kappa statistic            0.801               0.760            0.730                  0.786 

RMSE                              0.281               0.314            0.307                  0.305 

MAE                               0.079               0.129            0.181                  0.164 

AUC                                0.954               0.938            0.930                  0.912 

 

 
Table  4 

Pairwise comparison of the PSO-ELM model  and the benchmarks using the t-test 

at the significant level of α = 5%.   
 

No             Pairwise comparison                            t                          p-Value            Sig. 

 
1               PSO-ELM vs. MLP-ANN                              2.338              0.0199            Yes 

2               PSO-ELM vs. SVM                                     −1.998            0.0464           Yes 

    3             PSO-ELM vs. C4.5 Decision tree            −2.331             0.0203             Yes   

 
 
compare the  selected  machine learning algorithms used  in this  study 

(Khosravi  et al., 2018). A higher  AUC value  depicts  better goodness-of- 

fit of the model,  and the prediction model with AUC values ranges  from 

0.8 to 0.9 indicates very good performance (Tien Bui et al., 2016). 

Once  the   best  performance  PSO-ELM model   was  achieved, the 

model  was used to compute the  flash flood index  for each  pixel of the 

study  area. 

 
 
5.  Results and discussion

 
RMSE = 

 

 (yi          ti 

)2 

n
 

5.1.  Experimental results and model comparisons

i=1                                                                                                                                         (11) 
 

n 

MAE =  
 1        

y  
     

t 
n          i          i                                                                                                                       

(12) i=1 

 
n      

(y    t )2 

Figs.  4,  5,  and  6  show  the  performance of  the  hybrid   PSO-ELM 

model in the training and the testing  phases.  It can be clearly  seen from 

the graphs  that  the proposed model  performs well in both  the training 

and the validation datasets. The overall  accuracies for the training and 

validation datasets were  93.34  and  90.05%,  respectively. In addition, 

the  PSO-ELM model  achieved very  high  R2  and  low  RMSE and  MAE
R2 = 1       i=1      i     i  

n 

i=1 (ti    t )2                                                                                                                     

(13) 

values  in both  training and  testing  phases. 

The  results  of the  training and  validation phases  of the  PSO-ELM

where  yi  and  ӯ are  the  predicted value  of the  ith  sample  and  the  pre- 

dicted  mean  value  of the  samples  from  the  obtained models,  respec- 

tively; ti and t are the target  value of the ith sample  and the target  mean 

values,  respectively; n is the  total  number of samples. 

The Receiver Operating Characteristic (ROC) curve was also used to 

assess the performance of the predictive ability  of the model.  The ROC 

curve  was generated by plotting the true  positive  (TP) rate  against  the 

false  positive  (FP) rate.  Additionally, the  area  under  the  ROC curve 

(AUC) is the standard statistical measure was generated to validate and 

model     are    summarized   in    Table    2    that     shows    R2 = 0.881, 

RMSE = 0.237,   MAE = 0.056,   and   Kappa   statistic = 0.867   for  the 

training  phase   and   R2 = 0.829,   RMSE = 0.281,   MAE = 0.079,   and 

Kappa  statistic = 0.801   for  the   validation  phase,   indicating  that   a 

highly  satisfactory flash-flood  predictions with  relatively small  errors 

was achieved. 

The global performance of the PSO-ELM model was measured using 

the  AUC-ROC method (Fig.  7)  and  showed  that  the  proposed model 

yielded  very  high  values  of AUC (> 0.95)  for  both  the  training and
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Fig.  7.  AUC of the  PSO-ELM model: (a)  Training dataset; (b)  Validation dataset.



International Journal of Engineering Sciences Paradigms and Researches: (Vol. 23, Issue 01) and (Publishing Month: August 2015) 

   81                    www.ijesonline.com (ISSN: 2319-6564) 
 

 

 
 

Fig.  8.  Flash-flood susceptibility map  for the  study  area  using  the  proposed PSO-ELM model. 
 

 
Table  5 

Characteristics of flash-flood susceptibility classes  for the  study  area  derived from  the  PSO-ELM model. 
 

No. Flash-flood 

index 

range 

Flood-flood susceptibility map (%) Verbal 

expressio

n 

Flash-flood 

location 

(%) 

Areas 

(km
2
) 

Flash-

flood 

density 

(%) 1 0.799–2.349 90–100 Very  high 73.81 75.52 97.74 
2 0.597–0.798 80–90 High 19.55 75.52 25.89 

3 0.352–0.596 70–80 Moderate 5.59 151.04 3.70 

4 0.085–0.351 55–70 Low 0.95 226.56 0.42 

5 −1.573–0.084 0–55 No 0.01 981.76 0 

validation datasets. Notably,   there   is  a  balance between the  model 

performance in the  training and  validation phases,  indicating that  the 

PSO algorithm successfully  optimized the  ELM model.  Overall,  the  re- 

sults  revealed that  the  PSO-ELM model  achieved a high  level  of pre- 

dictive  accuracy and  reliability in terms  of AUC values. 

The effectiveness of the proposed PSO-ELM model was compared to 

SVM, MLP-ANN, and  C4.5  Decision  Tree  benchmark methods. These 

models were performed within the MATLAB software (Matwork, 2017). 

Regarding the  implementation of the  SVM, the  model  was constructed 

using  with  C = 14 and  γ = 5.126  and  using  the  Radial  Basis Function 

(RBF) kernel  function. For  the  MLP-ANN, an  appropriate  number of 

neurons in  the  hidden layer  was  found  to  be  10  through a test  with 

detailed parameters suggested by Hoa et al. (2019). Regarding the C4.5 

Decision  tree,  the  hyper-parameters of the  model  were  selected  based 

on a suitable value  of the minimal number of observations per tree leaf 

and was set at 2 with  a confidence factor  of 0.15  for the C4.5 Decision 

tree  model. 

Table  3 shows  the  performance of the  hybrid  PSO-ELM model  and 

the benchmark machine learning models. As can be clearly seen that the 

PSO-ELM yielded  the highest  predictive accuracy in terms of the overall 

accuracy, the  Kappa coefficient, the  RMSE, the  MAE, and  the  AUC for 

the  validation dataset. To check  if the  performance of the  PSO-ELM 

model and the benchmark models has statistical significance, the paired 

t-test (Altman,  1990)  was performed at the significant level of α = 5%. 

The  null  hypothesis is that  the  performance difference of two  flash- 

flood  models  is equal  to  0,  and  then,  p-value  (two-tailed probability 

value)  and the test statistic t value are computed. If p-value < 0.05 and 

the  test  statistic t exceeds  the  critical  values  ( ± 1.96),   the  null  hy- 

pothesis  is rejected and  that  indicate a significant difference between 

two  models.  Table  4 shows  that  the  p-values  are < 0.05  and  the  test
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Fig. 9.  The graphic curve  for separating the  flash  flood  susceptibility classes  in the  study  area. 

statistic t values are less than  the critical  values,  demonstrating that  the 

null hypothesis is rejected and the performance of the PSO-ELM model 

significantly  differ  from  the  benchmarks. Overall,   these   results   de- 

monstrated that  the  PSO-ELM model  is  the  best  suit  for  flash  flood 

susceptibility in the  study  area,  and  support conclusions drawn  about 

the application of such hybrid  models for other  types of natural hazards 

(Jaafari et al., a,b). 
 

 
5.2.  Construction of the flash flood susceptibility map 

 
Since the PSO-ELM model  performed well for both  the training and 

validation  datasets  and   outperformed  the   benchmark  models,   this 

model was further used to compute the flash flood susceptibility indices 

for  all  the  pixels  within the  study  area.  To visualize   the  final  flood 

susceptibility maps,  these   indices   were  transformed to  ArcGIS 10.4 

software package  and  converted to a raster  format.  The map  was then 

reclassified into five classes that  depict  to very high (10%),  high (10%), 

moderate (10%),  low (15%),  and  no flood  (55%)  susceptibility across 

the  study  area  (Fig. 8). The threshold values  used  for classifying  these 

classes  (Fig. 9) were  determined by overlaying the  historical flood  lo- 

cations   and  the  flash-flood  susceptibility indices  map  (Tien  Bui and 

Hoang  ;  Tien Bui et al., ). The results  showed  that  when  10% of the 

total  area  was classified  into  the very high and  the high  classes, 

73.81  and  19.55%  of the  total  historical flash  flooding  locations cov- 

ered  by these  two  classes,  respectively. The  moderate class  occupied 

10% of the  region  and  accounted for only 5.59%  of the  flash-flood  lo- 

cations  (Table  4). 

The  low  susceptibility  class  covered   15%  of  the  land   area   and 

consisted of only 0.95%  of the flash-flood  locations. Further analysis  of 

flash-flood  density  revealed that  there  was  a considerable increase in 

the  flash-flood  density  from  the  moderate class to the  very  high  class 

(Table  5). These  indicate that  the  proposed PSO-ELM hybrid  machine 

learning model  successfully   delineated the  study  area  into  different 

susceptible areas  (Fig. 8). 
 

 
6.  Concluding remarks 

 
This study  proposed a new  hybrid  PSO-ELM model  for predicting 

flash  flood  susceptibility in a high  frequency tropical-cyclone area  of 

Vietnam.  We employed the  ELM algorithm to generate the  initial  pre- 

diction   model,  while  the  PSO was  used  to  search  and  optimize the 

hyper-parameters of the  model.  A geospatial database consisted of 12 

conditioning factors  was  used  to train  and  verify  the  newly  proposed 

PSO-ELM model.  The experimental results  show that  the proposed PSO- 

ELM machine learning model  has  high  performance in  terms  of  R2, 

RMSE, MAE, and  AUC performance metrics. 

The main  advantage of the  hybrid  PSO-ELM model  is the  PSO al- 

gorithm that  helps  to automatically search  and  find the  input  weights 

for the  ELM, where  the  coordinates of each  particle are  values  of the 

weights, and  thus,   each  particle is  a  hyper-parameter for  the  ELM 

model.  With a population of 35 particles and 2000  running iterations, a 

total  of 70,000 solutions were searched and tried  to find the optimized 

values for the input  weights. Consequently, the high performance of the 

model indicates that the selection of influencing factors,  the coding, and 

training process  were  carried out successfully. 

The main  disadvantage of the PSO-ELM model  is the determination 

of hidden neurons that  requires a time-consuming trial  and  error  pro- 

cedure. Further, the  determination of the  upper  and  lower  bounds  of 

the  searching space  that  influence the  convergence of  the  PSO-ELM 

model  is a difficult  task.  Although the  searching space  of −1.0 to 1.0 

used  in  this  research resulted in  high  performance of  the  PSO-ELM 

model,  we  can  certainly not  conclude that  this  is the  best  searching 

space  for  the  study  area.  Overall,  by  integrating PSO with  ELM, the 

training process  takes much  time  compared to that  of the original EML 

algorithm. Thus, for large-scale landscapes, the  training process  of the 

PSO-ELM may be time-consuming and  restricts the  management plans 

that  need  a quick  estimation of flood susceptibilities. 

Despite  these  limitations, the  PSO-ELM model  can  help  the  man- 

agers/authorities to achieve  a high level of predictive accuracy of future 

floods  that  indeed  greatly  facilitate the  development of management 

plans  for flood-prone landscapes in the  face of future  climate  change. 
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